Quantum Revolution: How Max Planck Tapped Into the Universe’s Zero-Point Mysteries

Unveiling the Ever-Vibrant Fabric of Reality

Introduction

At the dawn of the twentieth century, Max Planck embarked on a quest to unravel how energy is absorbed and emitted by the filaments within light bulbs, aiming to maximize their efficiency and illuminate more while consuming less power. In doing so, Planck not only resolved practical engineering challenges, but also ignited a scientific revolution that fundamentally reshaped our comprehension of physics and the universe itself.

Planck’s investigations shattered the classical notion that energy flows in a seamless, continuous stream. Instead, he revealed that energy is exchanged in tiny, indivisible packets known as quanta. This radical insight gave birth to quantum theory, a new framework that challenged long-held assumptions and transformed our understanding of the physical world, from the behaviour of the smallest particles to the structure of the cosmos.

The significance of Planck’s discovery extends far beyond theoretical physics. By demonstrating that energy exchanges are quantized, he opened the door to a wave of scientific breakthroughs, paving the way for technologies such as semiconductors, lasers, and quantum computing. Moreover, subsequent research based on Planck’s work uncovered the existence of zero-point energy: even in the coldest conceivable state, where classical theory predicted absolute stillness, quantum systems retain a subtle but unceasing vibrancy. This revelation overturned the classical thermodynamic belief that all motion ceases at absolute zero, unveiling a universe in perpetual motion at its most fundamental level.

Planck’s legacy is profound, not only did he lay the foundations for quantum mechanics, but his insights continue to inspire new discoveries that help us probe the mysteries of existence. By deepening our grasp of reality’s underlying fabric, Planck’s work has transformed how we see our place in the universe, inviting us to explore how the strange and wonderful quantum world shapes everything from the nature of matter to the emergence of life itself.

The Black Body Problem and Ultraviolet Catastrophe

As the nineteenth century turned, new technologies such as the light bulb drove increased interest in the interaction between materials and radiation. Efficient engineering of light bulbs demanded a deeper understanding of how materials absorb and emit energy, especially the filaments inside the bulbs. In the early 1890s, the German Bureau of Standards commissioned Planck to optimize light bulb efficiency by identifying the temperature at which bulbs would radiate mainly in the visible spectrum while minimizing energy loss in the ultraviolet and infrared regions [1].

Prior attempts to explain the behaviour of heated materials, notably the Raleigh-Jeans law, predicted infinite energy emission at short wavelengths – the so-called ultraviolet catastrophe. These models often relied on the concept of an ideal material that perfectly absorbs all wavelengths, termed a black body. The ultraviolet catastrophe led directly to the “black body problem,” as experimental results contradicted the notion that materials like lightbulb filaments would emit infinite energy at high temperatures.

Planck addressed this issue by conducting experiments with electrically charged oscillators in cavities filled with black body radiation. He discovered that the oscillator could only change its energy in minimal increments, later quantified as h (Planck’s constant). The energy exchanged was proportional to the frequency of the electromagnetic wave and occurred in discrete quantities, or quanta. This finding gave rise to quantum theory and revealed a deeper truth: energy remains with the oscillator (or the atoms in the material) even at absolute zero temperature.

Zero-Point Energy and Its Implications

By solving the ultraviolet catastrophe through his black body absorption equation, Planck discovered zero-point energy (ZPE). Unlike the catastrophe, the existence of zero-point energy was verified experimentally, overturning classical thermodynamics’ expectation that all molecular motion would cease at absolute zero.

Zero-point energy accounts for phenomena such as vacuum-state fluctuations, where even an electromagnetic field with no photons is not truly empty but exhibits constant fluctuations due to ZPE. One of the most fascinating examples is the Gecko – a lizard capable of traversing walls and ceilings on nearly any material. The Gecko exploits quantum vacuum fluctuations present in the zero-point energy of the electromagnetic field. Its feet are covered with millions of microscopic hairs that interact with the quantum vacuum fluctuations of any nearby surface, resulting in an attractive force known as van der Waals force, a microscopic form of the Casimir effect. Through this process, the Gecko draws energy from the vacuum field, demonstrating nature’s ability to harness zero-point energy.

Experimental Advances in Harnessing Zero-Point Energy

Research teams from Purdue University and the University of Colorado Boulder have shown that energy from the vacuum state can be accessed through the Casimir force, which acts on micro-sized plates in experimental setups. Although the effect is small and produces limited energy, more efficient methods may be possible using quantum vacuum density and spin. The impact of spin is visible in fluid systems like hurricanes and tornadoes. By inducing high angular momentum vortices with plasma coupled to the quantum vacuum, researchers can create energy gradients much larger than those observed with simple non-conductive plates in the Casimir effect.

These pioneering investigations illuminate how quantum phenomena, once confined to abstract theory, are now being harnessed in the laboratory to extract measurable effects from the very fabric of space. While the practical application of zero-point energy remains in its infancy, the ongoing refinement of experimental techniques – such as manipulating spin and plasma interactions – offers glimpses of a future where the subtle energy fields underlying all matter could become a resource for technological innovation. Each advance deepens our appreciation for the intricate interplay between quantum mechanics and the observable world, suggesting that the restless energy pervading the vacuum is not merely a curiosity, but a potential wellspring of discovery and transformation that may one day reshape our understanding of both energy and existence.

Conclusion

Max Planck’s pursuit to optimize the humble light bulb did far more than revolutionize technology, it opened a window into the deepest workings of the universe. By questioning how filaments absorb and emit energy, Planck uncovered the quantum nature of reality, revealing that energy is exchanged in discrete packets, or quanta, rather than in a continuous flow. This insight not only solved the black body problem and the ultraviolet catastrophe but also led to the discovery of zero-point energy, the realization that even at absolute zero, particles never truly rest, and the universe itself is in perpetual motion. 

Zero-point energy shows us that nothing in the cosmos is permanent. Particles continuously move, shift, and even appear and disappear, embodying a universe that is dynamic and ever-changing. As humans, we are inseparable from this cosmic dance. Our bodies, thoughts, and lives are woven from the same quantum fabric, always in flux, always evolving. Planck’s work reminds us that change is not just inevitable, it is fundamental to existence itself. In understanding zero-point energy, we come to see that reality is not a static backdrop, but a vibrant, restless sea of possibility, where both matter and meaning are constantly being created and transformed.

Quantum Entanglement: ‘Spooky Action at a Distance’

The atoms that comprise all matter – including those composing our bodies – originated from distant stars and galaxies, emphasizing our intrinsic connection to the universe at fundamental scales. It is perhaps an inescapable conclusion that our reality is defined by how we observe and view our universe, and everything within it.

Introduction

In 1935, Albert Einstein, Boris Podolsky, and Nathan Rosen published a paper addressing the conceptual challenges posed by quantum entanglement [1]. These physicists argued that quantum entanglement appeared to conflict with established physical laws and suggested that existing explanations were incomplete without the inclusion of undiscovered properties, referred to as hidden variables. This argument, later termed the EPR argument, underscored perceived gaps in quantum mechanics.

Quantum entanglement represents a significant and intriguing phenomenon within quantum mechanics. It describes a situation wherein the characteristics of one particle within an entangled pair are dependent on those of its partner, regardless of the spatial separation between them. The particles involved may be electrons or photons, with properties such as spin direction serving as examples. Fundamentally, entanglement is based on quantum superposition: particles occupy multiple potential states until observation forces the system into a definite state. This state collapse occurs instantaneously for both particles.

The implication that measuring one particle’s property immediately determines the corresponding property of the other – even across vast cosmic distances – suggests the transmission of information at speeds exceeding that of light. This notion appeared to contradict foundational principles of physics as understood by Einstein, who referred to quantum entanglement as “spooky action at a distance” and advocated for a more satisfactory theoretical explanation.

Modern understanding of entanglement

The EPR argument highlighted the conventional concept of reality as consisting of entities with physical properties that are revealed through measurement. Einstein’s theory of relativity is based on this perspective, asserting that reality must be local and that no influence can propagate faster than the speed of light [2]. The EPR analysis demonstrated that quantum mechanics does not align with these principles of local reality, suggesting that a more comprehensive theory may be required to fully describe physical phenomena.

It was not until the 1960s that advances in technology and clearer definitions of measurement permitted physicists to investigate whether hidden variables were necessary to complete quantum theory. In 1964, Irish physicist John S. Bell formulated an equation, Bell’s inequality, which holds true for hidden variable theories but not exclusively for quantum mechanics. If real-world experiments failed to satisfy Bell’s equation, hidden variables could be excluded as an explanation for quantum entanglement.

In 2022, the Nobel Prize in Physics honored Alain Aspect, John Clauser, and Anton Zeilinger for their pioneering experiments utilizing Bell’s inequality, which significantly advanced our understanding of quantum entanglement. Unlike earlier thought experiments involving pairs of electrons and positrons, their work employed entangled photons. Their findings definitively eliminated the possibility of hidden variables and confirmed that particles can exhibit correlations across vast distances, challenging pre-quantum mechanical interpretations of physics.

Furthermore, these experiments demonstrated that quantum mechanics is compatible with special relativity. The collapse of the states of two entangled particles upon measurement does not entail information transfer exceeding the speed of light; rather, it reveals a correlation between entangled particle states governed by randomness and probability, such that measuring one immediately determines the state of the other.

Conclusion

When he called it “spooky action at a distance”, Einstein sought to understand entanglement within the context of local reality. The EPR argument subsequently highlighted the non-local nature of reality through quantum entanglement. Although information cannot be transmitted faster than the speed of light, quantum entanglement demonstrates that the states of entangled particles exhibit instantaneous correlations, ensuring that any transfer of information remains consistent with causality and relativity.

Quantum entanglement underscores the indeterminate nature of reality prior to observation. Rather than existing as predetermined outcomes, reality according to quantum systems resides within vast fields of probability that are defined upon measurement. Additionally, the atoms that comprise all matter – including those composing our bodies – originated from distant stars and galaxies, emphasizing our intrinsic connection to the universe at fundamental scales. It is perhaps an inescapable conclusion that our reality is defined by how we observe and view our universe and, everything within it.

The Quantum Realm: Our Connection to the Universe

At the quantum scale, the universe manifests as a field of infinite possibilities, where the electrons within our atoms move in clouds of probability, always shifting. Consequently, we, as humans composed of countless atoms, are an inseparable part of the universe’s ever-changing nature, and our problems, at the quantum level, do not really exist.

Introduction 

When we close our eyes and place our hand on our forehead, we perceive the firmness of our hand and the gentle warmth of our skin. This physical sensation, the apparent solidity and presence of our body, seems tangible and reassuring. However, at the most fundamental level, our bodies are composed almost entirely of empty space. Beneath the surface of our bones, tissues, and cells, we find that our physical form is constructed from atoms, which themselves are predominantly made up of empty space, held together by the invisible forces of electromagnetism. The idea that we are, in essence, built from empty space can feel unsettling, yet it is central to our understanding of quantum mechanics.   

If we imagine an atom, and picture a single proton as a grain of sand placed at the centre of a football stadium, the nearest electron would be found somewhere in the outer bleachers, approximately 90 metres away. The vast expanse between the proton and the electron is filled with nothing but empty space [1]. The electrons themselves do not orbit the nucleus like tiny marbles following a fixed path. Instead, they ripple through space in a cloud-like manner, appearing in one location at one moment, and in another the next. Their movement is not governed by certainty, but by the probability clouds that define their position and momentum.    

The Universe Is Impermanent

Everything in the universe is in a state of constant motion. Objects such as chairs and tables may appear completely motionless to our eyes, yet at the quantum level, this sense of stillness is an illusion. Even as we sleep and perceive ourselves to be at rest, the atoms that make up our bodies are ceaselessly moving and vibrating. This underlying activity is dictated by the principles of quantum mechanics, which reveal an intricate and dynamic world beneath the surface of everyday experience.

Werner Heisenberg’s uncertainty principle states that it is impossible to simultaneously know both the precise position and the exact momentum of any object [2]. The more accurately we measure one, the less certain we become of the other. This fundamental limit means that no object can ever be fixed in a single, definite spot while remaining absolutely still. To do so would violate the laws of quantum physics, which require all matter to retain a degree of movement and uncertainty 

Consider a ball placed in a bowl and cooled until it appears perfectly still at the bottom. According to the uncertainty principle, the ball can never truly be at rest. It will always exhibit a subtle vibration, as restricting its position too precisely leads to uncertainty in its momentum. This perpetual motion is known as the ball’s zero-point energy.  

A universe where everything is perfectly still would not permit life as we know it. Nothing in the cosmos is permanent; particles continuously move, shift, and even appear and disappear. Remarkably, quantum theory predicts that even the vacuum of space is not empty but is filled with modes of vibration possessing zero-point energy [3]. This means that space itself is permeated by an endless and restless sea of energy, where particles are constantly popping in and out of existence, reflecting the ever-changing nature of reality.  

Quantum Mechanics and the Foundations of Consciousness 

At the quantum level, the behaviour of particles is defined by several extraordinary phenomena, including superposition, entanglement, coherence, and the observer effect. In the phenomenon known as superposition, particles can exist in multiple states at the same time. These particles remain in superposition until an act of observation occurs, causing their wave functions to collapse into a single, definite outcome. When two particles interact and become entangled, their properties, such as spin, polarization, and momentum, become fundamentally inseparable. Measurement of one entangled particle instantly determines the state of its partner, regardless of the distance separating them. 

Humans are deeply entangled with the inner workings of the universe. Our thoughts, memories, and emotions are rooted in the quantum behaviours of the atoms that compose our bodies. Consciousness, in this context, is shaped and defined through quantum operations. The billions of neurons firing simultaneously in the human brain function through quantum entanglement, collectively giving rise to our conscious experience [4]

Stuart Hameroff and Roger Penrose, in their 1996 paper, argued that consciousness depends on coherent quantum processes within collections of microtubules found in brain neurons. At the lowest neurophysiological level, the cytoskeleton of neurons in the human brain is composed of protein networks, specifically neurofilaments and microtubuli. These structures are essential for various transport processes within neurons [5] [6]. According to Hameroff and Penrose’s theoretical framework, tubulins in microtubuli serve as the substrate for quantum processes. 

Through their Orchestrated Objective Reduction (Orch OR) theory, Hameroff and Penrose proposed that the brain’s microtubules act as quantum computers, maintaining coherent quantum states that collapse in a process tied to the geometry of space-time and influenced by quantum gravity. In this framework, consciousness operates as a quantum wave function passing through the brain’s microtubuli, with these collapses corresponding to the observer’s elementary acts of consciousness and embedding them directly into the fabric of the universe. 

Conclusion 

Contemplating the foundations of our bodies and consciousness, it becomes apparent that quantum mechanics may govern much more than just the biological processes within us. While the Orch OR theory proposed by Hameroff and Penrose remains a topic of debate, it opens the door to the possibility that consciousness arises not solely from biological functions but also from quantum phenomena.

In quantum computing, the act of observation is inherently influential, determining the state to which a particle’s wave function collapses. This raises a profound question: could quantum mechanics provide an explanation for our ability to perceive and realize different realities within our consciousness? Furthermore, could our observation of quantum states, which shape our consciousness, be the very mechanism that connects us to the universe in a holistic manner?

I found that for me, the most meaningful way to think about it was that the concept of uncertainty and constant motion is central to how the universe operates at the quantum level. If our bodies and consciousness are subject to the laws of quantum physics, then our experiences of periods of darkness and despair, feelings of being stuck or hopeless, are never truly fixed states. Motion persists within our atoms and within our consciousness, regardless of our perceptions. The pressure we experience, the everyday stresses, and our emotions are all shaped by how we observe and interpret events. At the quantum level, nothing remains permanent; everything is in flux.

This perspective is not meant to diminish our existence as human beings. Rather, it highlights our intrinsic connection to the fabric of the universe. The universe does not operate with absolute certainty or permanence; it is defined by uncertainty, continual change, and movement. At the quantum scale, the universe manifests as a field of infinite possibilities, where the electrons within our atoms move in clouds of probability, always shifting. Consequently, we, as humans composed of countless atoms, are an inseparable part of the universe’s ever-changing nature, and our problems, at the quantum level, do not really exist.


Designing solutions that effectively meet user needs is the driving force behind my work. I also share practical insights on computing and human-centered design each week. I’d love to connect and discuss your design ideas or challenges; feel free to reach out to me today on LinkedIn or contact me at Mimico Design House.


Bringing Ideas to Life: My Journey as a Product Architect

My work is about helping clients and organizations bring their ideas to life, transforming understanding into development, and development into reality, with as little friction and as much functionality as possible.

Lately, I have been reflecting on what drew me, as a designer, to write about topics such as artificial intelligence and quantum computing. I have been fascinated with both topics and how they have transformed that way we view the world. Everything we see today in terms of advancements in AI and quantum computing started with an idea, brought to life through innovation and perseverance.

In AI, there was the idea that machine learning would transform the way we do business by leveraging large amounts of data to provide valuable insights, something that would not be easily attainable through human effort. In quantum computing, there was the idea that applying the way particles behave in the universe to computing would unlock a vast potential for computing capabilities and power, beyond what classical computers can achieve. So many other advancements and achievements in AI and quantum computing continue to be realized through the conception of ideas and the relentless pursuit of ways and methods to implement them.

Everything starts with an idea

Beyond AI and quantum computing, everything we see around us started with an idea, brought to life through continued and persistent effort to make it a reality. Every building we see, every product, every service and all material and immaterial things in our lives are the product of an idea.

As a designer and product architect, I also help make ideas a reality through persistent effort and the application of methodology that lays a roadmap for the implementation of those ideas. Similarly, AI and quantum computing are fields that are bringing novel and exciting concepts to life through the development and application of scientific methodology.

While thinking about all of this, I pondered how I would define my work and role as a designer. How would I describe my work, knowing that most of us use technology without thinking about the journey a product takes from idea to experience? What value do I bring to organizations that hire me to help them with their problems? In an age where products are incorporating ever more advanced and sophisticated technology, as is the case with AI and quantum computing, how does my work extend beyond simply developing designs and prototypes?

To answer these questions, I am drawn back to the fact that everything around us starts with an idea. As a designer, it is extremely rewarding to me to help make ideas for my clients a reality while navigating the conceptual, technical and implementation challenges.

Making the invisible useful

I’ve been thinking a lot about the similarities between how we design physical spaces and how we design digital ones. Just like a building starts as an idea in an architect’s mind, so are the products that I work on and help a multitude of organizations bring to life. As a designer, I help lay the foundations for a product idea by thoroughly understanding the motivations and needs behind it, and what benefits and improvements implementing it would bring.

Buildings serve needs by providing housing for people or serving as places to work, and for businesses and organizations to operate. A well-designed building offers an effortless flow that draws people in and makes them want to stay. Similarly, great digital design allows for seamless navigation, creating an experience that feels natural and engaging. Before an architect devises plans and drawings for a building, they must first maintain a clear vision of the idea in their mind, understand the needs behind it and ensure that their designs and plans meet those needs.

From there, the idea and concept of the building in the architect’s mind are translated into plans and drawings. Those plans are drawn and shared with a builder, who in turn collaborates with the architect to bring them to life. Without the architect and their clear vision of the idea and concept behind the building, the building would not exist, at least not in the shape and form that the architect would have imagined. It would not properly serve the needs and bring about the benefits that accompanied the original idea.

Just like a building architect, as a product architect I must also understand the needs behind digital products to create experiences that truly serve the user. Through this process, I envision flows and interactions that will enable users to achieve their goals in the simplest and easiest way possible, reducing friction while also achieving the desired business value and benefit. Like an architect, I collaborate with members of technical teams so that the idea behind the product can be realized to its full potential through detailed roadmaps, designs and prototypes.

Figure 1. Architects are masters of the invisible made useful.

An architect must possess technical and creative skills that enable them to visualize the idea of a building. The same is true for me as a product architect. Without the ability to clearly articulate complex technical concepts through detailed designs and specifications while also applying a creative lens, product ideas would not be realized to their full potential.

In summary, how do I define my work? My work is about helping clients and organizations bring their ideas to life, transforming understanding into development, and development into reality, with as little friction and as much functionality as possible. I can help you and your organization achieve the same. Let me show you how.

Quantum Computing: Revolutionizing Industry and Science

We can imagine a world where quantum computers will be able to design powerful new drugs by simulating the behaviour of individual molecules, and optimize complex supply chains to help companies source the parts they need and assemble products in the most efficient way possible.

Introduction

Quantum computing is an entirely new dimension of computing leveraging the laws of quantum mechanics. Quantum computers apply superposition and entanglement at the universe’s smallest scales and coldest temperatures. They also adopt a multidisciplinary approach comprising of computer science, physics and mathematics to enable scientist to solve complex problems.

While today’s quantum computers remain rudimentary and error-prone, they have the potential to provide significant performance gains, and dramatically increased computation speeds to perform complex computational tasks that can take classical computers years to complete. Numerous governments, universities and vendors around the world are investing heavily in harnessing quantum computing technology to achieve fault-tolerant and reliable systems.

In this article, I provide a detailed examination of the key concepts underlying quantum computers, and how they promise to open the potential for massive advancements in a variety of scientific and industrial applications.

Superposition and entanglement

Qubits are the most basic units of processing in quantum computers. Qubits rely on the use of particles such electrons and photons, that can be suspended in states of 0, 1 or any states in between. This ability of qubits to be in more than one state at a time is what gives quantum computers their processing power. However, it is the application of superposition and entanglement through interference to qubits that allow quantum computers to produce reliable outcomes.

To better understand superposition, we refer to the famous thought experiment involving a cat as imagined by the physicist, Erwin Shrödinger. Shrödinger’s experiment imagined a cat sealed in a box with a poison trap that can be triggered by a decaying radioactive atom. Since the decay of the radioactive atom is uncertain, at any given moment the cat could be in a superposition of states such that it is either dead or alive [1]. It is only when someone opens the box and observes the cat does its state become definite or its state “collapses” to being either dead or alive.

Superposition is difficult to explain through analogies; however it is also possible to imagine a coin tossed and spinning fast in the air. As long as the coin continues spinning then its state can be considered both heads and tails. It is only when the coin is stopped does one observe its state as either heads or tails.  

Quantum theory also implies that particles can be linked with each other, such that when the state of one particle changes it will instantly impact the state of the other, regardless of the distance between them. This is what is referred to as entanglement, and it is what allows qubits to correlate their states with each other and thus scale their processing power exponentially.

In Shrödinger’s cat experiment, entanglement can be described as having several cats in the box that are entangled in a superposition of states such all cats in the box are either dead or alive. When someone opens the box, their state then collapses such that the cats in the box are all observed to be either dead or alive. Entanglement means that two particles are always connected, and they are never independent of each other. This is how nature works at the atomic level.   

Interference

Quantum interference refers to a phenomenon where the probability amplitudes of quantum states combine, either constructively or destructively, to influence the likelihood of an outcome. In classical interference, physical waves such as sound or water can overlap such that they amplify or cancel each other out. Quantum interference is different in that is it based on the wave-like behaviour of particles such as electrons, photons and atoms [2].

In quantum theory, particles are described via wavefunctions, which contain complex-value probability amplitudes. We can think of a particle going through two indistinguishable paths such as two slits in a barrier as the two-slit experiment describes. In this experiment, particles such as photons or electrons are fired one at a time at a wall with two narrow slits and a screen placed behind it. Each particle must pass through slit A, slit B or a combination of both. The expectation would be that particles would pass through one slit or the other, and that the screen would show two bright spots as the particles pass through.

Instead of observing two spots on the screen, a series of bright and dark fringes are observed – an interference pattern. The fringe pattern is characteristic of the behaviour of waves rather than particles, where the bright areas indicate wave amplitudes that amplified each other, while the dark ones are waves that canceled out. This behaviour can be described as [3]:

  • Constructive interference, where the wave amplitudes add up, thus increasing the probability of a particular outcome.
  • Destructive interference, where the amplitudes cancel each other out, thus reducing or eliminating the chance of an outcome.

What is fascinating about the fringe pattern observed is that it can appear even when particles are sent one at a time. Therefore, instead of interfering with each other particles are interfering with themselves, thus taking both paths simultaneously in superposition.

Interference is what gives quantum computers their superiority over classical computers. It allows quantum systems to guide computations by enhancing the probability of correct answers while supressing wrong ones. Once qubits are transformed and entangled, their probability amplitudes evolve through interference. All possible computations are performed simultaneously and are allowed to interact through entanglement.

A critical condition of interference is that the paths followed by qubits are indistinguishable, such that it is not possible to determine which path a qubit takes, even in principle. Any form of measurement collapses the wavefunction, thus destroying the superposition and possibility of interference. Interference underlies the power of quantum computing, and it remains a key component in unlocking the full potential of quantum technology.

Measurement

In the final stage of quantum computing, states collapse into classical outcomes upon measurement. These outcomes are not random and are fundamentally determined by whether computational paths leading to them have interfered constructively or destructively.

A state where computational paths leading to it have interfered destructively will have a probability close to 0. Similarly, a state where computational paths leading to it have interfered constructively will have a significantly amplified likelihood.

Instead of measuring outcomes sequentially, quantum computers exploit the wave-like nature of qubits to allow all possible computational paths to co-exist and interfere. This creates a probabilistic landscape where the correct answers become the most likely outcomes.

Quantum bits (Qubits)

Computers process information using bits that store information using 0’s and 1’s. Bits can be represented using physical objects such as bar magnets or switches placed in either a state of up or down. Bits can maintain their state for a long time, thus allowing them to represent stored information in a stable and long-lasting fashion. However, bits are limited in their ability to store information when compared to qubits. While bits can exist in either a stare of 0 or 1, qubits can exist in a superposition of multiple states of 0, 1 or any state in between.

The superposition of qubits is what makes them superior to classical bits. It is possible to think of a qubit as an electron spinning in a magnetic field. The electron could be spinning with the field, known as spin-up state, or against the field, knows as spin-down state. Suppose it is possible to change the direction of the electron’s spin using a pulse of energy such as a laser. If only half a pulse of laser energy is used and all external influences are isolated, then we can imagine the electron in superposition where it is in all possible states at once [4].

Superposition increases the computational power of qubits exponentially depending on the number of qubits in a quantum computer. Whereas two classical bits can contain only two pieces of information (01 and 10), two qubits can store a superposition of four combinations of 0 and 1 simultaneously, three qubits can store eight combinations, and so on. Therefore, a quantum computer can perform 2N computations, where N is the number of qubits.

Conclusion

Through exponential scaling, unique algorithms and the continued evolution of quantum hardware, quantum computing has the potential to revolutionize industries like cryptography, material science, pharmaceuticals and logistics. We can imagine a world where quantum computers will be able to design powerful new drugs by simulating the behaviour of individual molecules, and optimize complex supply chains to help companies source the parts they need and assemble products in the most efficient way possible. Other more impactful applications could be computers that could break the encryption that safeguards our private information on the internet.

Governments, companies and research labs are working tirelessly to harness the potential of this emerging technology. Quantum computing, combined with the capabilities and advancements in AI, has the potential to achieve artificial general intelligence (AGI). By enabling rapid data processing and computation, improved learning capabilities and parallel processing, quantum computers can process extensive datasets, enabling the improved learning capabilities needed for AGI. As quantum computers continue to rapidly evolve, it is essential for us to harness their potential in ways that further advance humanity’s future and well-being.

References

[1] Quantum Computing Explained

[2] What is quantum interference and how does it work?

[3] Quantum interference in Quantum Computing: 2025 Full Guide

[4] What is quantum computing? How it works and examples